Falls Bridge Advisory Committee Meeting #9 Rehabilitation of Existing Bridge – Constructability

Integrity - Competence - Service

Meeting Agenda

- Refined Rehabilitation Strategy
- Construction Approach
 - Assumed Construction Methods
 - Assumed Constr. Sequence
- Construction Schedule
- Construction Cost
- Alternatives Matrix
- Next Steps
- Discussion

Approach to Evaluating Rehabilitation

- Steps 1 & 2: Identify, assess & short list initial options
 - Superstructure
 - Replace deck, floorbeams and railings
 - Extensive concrete rehabilitation at tie girders, knuckles and hangers
 - Strengthen tie girders
 - Abutments & Retaining Walls
 - Strengthen / Reinforce abutments
 - Remove eroded fill within approaches, replace with concrete fill
- Step 3: Assess constructability, schedule, impacts, longevity & cost
- Step 4: Identify most suitable rehabilitation strategy

Presented

Last Meeting

Integrity - Competence - Service

Superstructure Rehabilitation

Superstructure Rehabilitation - Existing

Superstructure Rehabilitation - Demolition

Superstructure Rehabilitation - Strengthening

Superstructure Rehabilitation

- Why Post Tension?
- Concrete is GOOD in compression, POOR in tension

Integrity - Competence - Service

Superstructure Rehabilitation

• How is Post Tensioning Achieved?

Substructure Rehabilitation

Substructure Rehabilitation

<u>Approach Walls:</u> Address wall stability and water infiltration through the installation of rock anchors and placement of concrete fill.

Construction Sequence:

- 1. Install rock anchors
- 2. Excavate existing fill at low tide
- 3. Place geotextile layer
- 4. Place concrete in layers
 - Approx. 1,000 CY of concrete
- 5. Perform superstructure rehab.
- 6. Place fill, pavement, and barrier

Substructure Rehabilitation

<u>Abutments:</u> Address masonry shifting, concrete condition and potential stability by replacing the existing concrete abutment cap.

Substructure Rehabilitation

<u>Abutments:</u> Address masonry shifting, concrete condition and potential stability by replacing the existing concrete abutment cap.

Sidewalk Addition

• <u>Alongside Bridge:</u> Independent pedestrian bridge, prefabricated steel.

Integrity - Competence - Service

Sidewalk Addition

• <u>At Abutment:</u> Support for pedestrian bridge extended from abutment.

Integrity - Competence - Service

Sidewalk Addition

• <u>Along Retaining Walls:</u> Sidewalk cantilevered from concrete fill.

Lift for Sea Level Rise

• Consider 2' and 4' of sea level rise in the next 100 years. Raise bridge and roadway. Total length of roadway reconstruction similar for all cases.

Temporary Bridge

- Additional evaluations are ongoing
- Constructability assumes a 220' long temp. bridge. Two piers required.
- Requires clearing up to 80' from west edge of pavement.

Integrity - Competence - Service

Approach to Evaluating Rehabilitation

- Steps 1 & 2: Identify, assess & short list initial options
 - Superstructure
 - Replace deck, floorbeams and railings
 - Extensive concrete rehabilitation at tie girders, knuckles and hangers
 - Strengthen tie girders
 - Abutments & Retaining Walls
 - Strengthen / Reinforce abutments
 - Remove eroded fill within approaches, replace with concrete fill
- Step 3: Assess constructability, schedule, impacts, longevity & cost
- Step 4: Identify most suitable rehabilitation strategy

Integrity - Competence - Service

Presented Last Meeting

- <u>Temporary Support</u>: Bridge was built using supports from below.
 - Continuously supported during construction.
 - Ensured stability during construction, minimized stresses in bridge.
 - Rehabilitation ideally would replicate this condition during construction.
 - The bridge is <u>HEAVY</u>! (600 Tons = 12 Tractor Trailer Trucks)

- <u>Temporary Support Approach #1:</u> Support from below
 - Pros: Similar to as-built construction.
 - Cons: Significant in-water work, limited clearances, higher risk, high cost.
 - Assessment determined contractors are less likely to use this approach.

- <u>Temporary Support Approach #2:</u> Support with overhead structure
 - Pros: Provides nearly unobstructed work space for contractor.
 - Cons: In water work, large foot print, complex, higher risk, high cost.
 - Assessment determined contractors are less likely to use this approach.

- <u>Temporary Support Approach #3:</u> Plate Girder Insertion
 - Pros: Avoids in-water work, simple details, less risk, lower cost to construct.
 - Cons: Limited working space within bridge. Requires completing approach and tied arch work sequentially rather than concurrently.
 - Assessment determined contractors are more likely to use this approach.
- This approach used as the basis for conceptual cost estimates.

Assumed Construction Methods

- Stabilization of Approach Retaining Walls:
 - Constructability assessment determined installing cofferdams is not practical.
 - Concrete fill to be placed without an enclosure, chasing tides. Minimizes the need for cofferdams.

MaineDOT

Assumed Construction Sequence

Assumed Construction Sequence

Assumed Construction Sequence

Assumed Construction Sequence

Assumed Construction Sequence

<u>NOTE:</u> The construction approach will be selected by the contractor. These graphics depict one possible approach. The construction approach selected by the contractor may be different and may result in increases in cost, schedule and impacts.

2. INSTALL TEMPORARY SUPPORT BEAMS AND STRUTS

Assumed Construction Sequence

Assumed Construction Sequence

Assumed Construction Sequence

<u>NOTE:</u> The construction approach will be selected by the contractor. These graphics depict one possible approach. The construction approach selected by the contractor may be different and may result in increases in cost, schedule and impacts.

HANGER RECONSTRUCTION

I. RECONSTRUCT HANGERS WITH ADDITIONAL REINFORCEMENT

Assumed Construction Sequence

Assumed Construction Sequence

Assumed Construction Sequence

Assumed Construction Sequence

Construction Schedule

Base Bridge Rehabilitation

- Approximately 1.5 to 2 years of construction
 - Assumes November to March in-water work windows
 - Assumes no winter shutdowns
 - Work begins ~Fall 2020, project complete ~Summer 2022

Task Name	Start	Finish	2020 Qtr 1, 2021 Qtr 2, 2021 Qtr 3, 2021 Qtr 4, 2021 Qtr 1, 2022 Qtr 2, 202 Nov Dec Jan Feb Mar Anr May Jun Jul Aug Sen Oct Nov Dec Jan Feb Mar Anr May
CONSTRUCT BASE BRIDGE REHABILITATION OPTION	Mon 11/16/20	Wed 6/1/22	
Phase 1 - Utility Relocation	Mon 11/16/20	Fri 1/8/21	
Phase 2 - Temporary Embankments & Trestle	Mon 1/11/21	Fri 2/5/21	-
Phase 3 - Substructure Rehabilitation: Retaining Walls & Approaches	Mon 2/8/21	Mon 4/26/21	
Phase 4 - Construct Temporary Arch Supports	Tue 4/27/21	Mon 6/7/21	
Phase 5 - Substructure Rehabilitation: Abutment Reconstruction	Tue 6/1/21	Wed 7/28/21	
Phase 6 - Superstructure Rehabilitation	Thu 7/29/21	Fri 2/11/22	
Phase 7 - Remove Temporary Arch Supports	Mon 2/14/22	Fri 3/11/22	
Phase 8 - Superstructure Rehabilitation: Concrete Patching	Mon 3/14/22	Fri 4/22/22	-
Phase 9 - Final Cleanup and Site Restoration	Mon 3/28/22	Wed 6/1/22	

Construction Schedule

Schedule Increase Associated with Other Items

- <u>Sidewalk Addition:</u> Adds ~2 months to schedule.
- <u>Raise Bridge for Future Sea Level Rise</u>: Adds ~1 month to schedule.
- <u>Temporary Bridge:</u> Adds ~5 months to schedule.

With all three optional items included the total construction duration is estimated to <u>increase</u> by ~8 months.

Construction Cost

Bridge Rehabilitation

• Estimated Construction Cost = \$8.7 Million

CONCEPTUAL COST SUMMARY - REHABILITATION				
COMPONENT		TOTAL		
Bridge Superstructure	\$	2,070,000		
Bridge Substructure & Retaining Walls	\$	1,430,000		
Temporary Works	\$	2,790,000		
Roadway Reconstruction	\$	400,000		
Miscellaneous Components	\$	540,000		
Sidewalk Addition	\$	200,000		
Raise Bridge for Future Sea Level Rise	\$	500,000		
On-Site Temporary Detour Bridge	\$	700,000		
ESTIMATED CONSTRUCTION COST:		8,700,000		

Alternatives Matrix

Evaluation Criteria		Bridge Rehabilitation			
		Alt. 1a: Rehabilitation In-kind	Alt. 1b: Rehabilitation with Sidewalk		
	Alternative Description	Rehabilitate Existing Bridge (approaches, superstructure, substructure)	Rehabilitate Existing Bridge (approaches, superstructure, substructure, add sidewalk)		
ost	Structure Type	Concrete Tied Arch	Concrete Tied Arch, Adjacent Pedestrian Bridge		
n & (Anticipated Service Life	50 years	50 years		
criptio	Total Bridge Deck Area (Square Feet)	2,880	3,430		
Desc	Total Life Cycle Cost (100 yr Period)	TBD (requires replacement or alternate concept cost to complete)	TBD (requires replacement or alternate concept cost to complete)		
	Construction Cost (2019 Dollars)	\$8.5 Million	\$8.7 Million		
	User Costs	N/A	N/A		
Project Impacts	Archeological	TBD	TBD		
	Architecture	TBD	TBD		
	Environmental	TBD	TBD		
	Site Conditions	TBD	TBD		
	Construction	TBD	TBD		
Cor	mmunity Needs TBD		TBD		
Other		TBD	TBD		

Next Steps

Approach to Evaluating Rehabilitation:

- Steps 1 & 2: Identify, assess & short list initial options
- Step 3: Assess constructability, schedule, impacts, longevity & cost
- Step 4: Identify most suitable rehabilitation strategy

Next BAC meeting

- Present roadway traffic metrics and approach to project requirements.
- Begin discussion of On-site versus Off-site detours.
 - Emergency Vehicles
- Note: Steps 1 through 4 may be revisited as the project develops

Integrity - Competence - Service

Discussion

Integrity - Competence - Service

