
Falls Bridge Advisory Committee Meeting #12 Replacement of Existing Bridge

Meeting Agenda

- Bridge Replacement
 - Recap of Replacement Options
 - Construction Approach & Schedule
 - Construction Cost
- Update on Temporary Bridge
- Update on Alternate Route
- Discussion

Recap of Replacement Options

Approach to Evaluating Replacement

Steps 1 & 2: Identify, assess & short list initial options

- Abutments & Retaining Walls
 - Widen approach to accommodate typical section.
 - Remove eroded fill within approaches, replace with concrete fill
- Superstructure
 - Assess conventional girder alternatives
 - Assess tied arch alternatives
- Step 3: Assess constructability, schedule, impacts, longevity & cost
- Step 4: Identify most suitable replacement strategy

Recap of Replacement Options

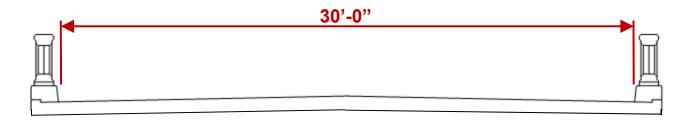
Purpose & Need Statement

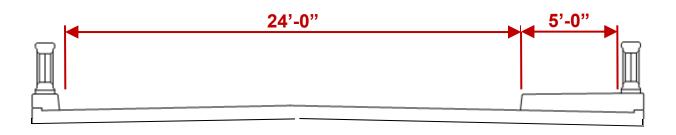
Project: Blue Hill, Falls Bridge #5038 (WIN 17712.00)

Purpose:

The purpose of the project is to address the structural deficiency of the Falls Bridge and improve public safety within the project limits in a cost effective manner. A successful project will provide a bridge capable of carrying all legal loads, will not require additional capital improvements for at least 25 years, will achieve a minimum remaining service life of at least 50 years, and improve site safety.

Need:


The rating condition of the bridge elements are: 5 (fair) for the concrete superstructure, 4 (poor) for the stacked stone substructure, and 4 (poor) for the concrete deck. Further deterioration of the bridge elements may require a load posting. The bridge spans over a reversing falls that is a popular recreation area; however; the bridge and roadway do not meet geometric design standards which create safety concerns.


Recap of Replacement Options

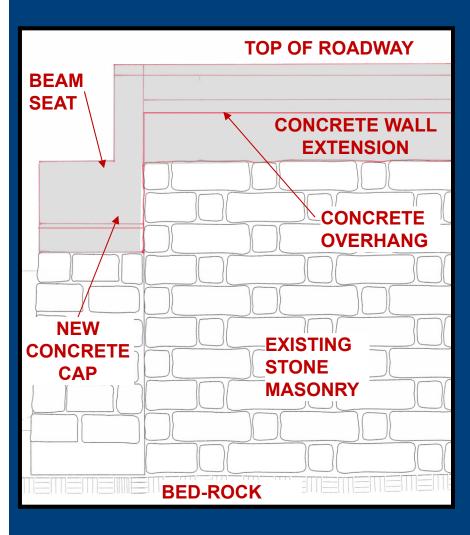
Design Criteria

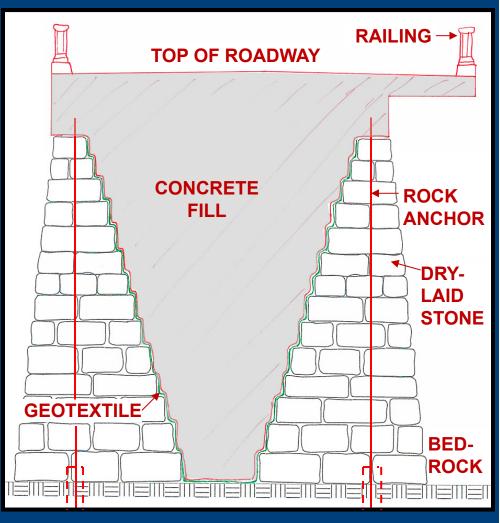
- 100 Year Service Life, Designed to Carry Modern Design Loads
- Modern Typical Section

TYPICAL SECTION WITH WIDE SHOULDERS

TYPICAL SECTION WITH SIDEWALK

Recap of Replacement Options - Substructure

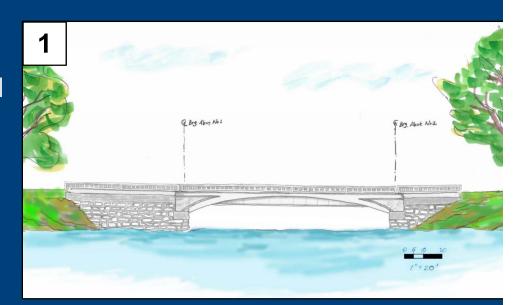

Abutments

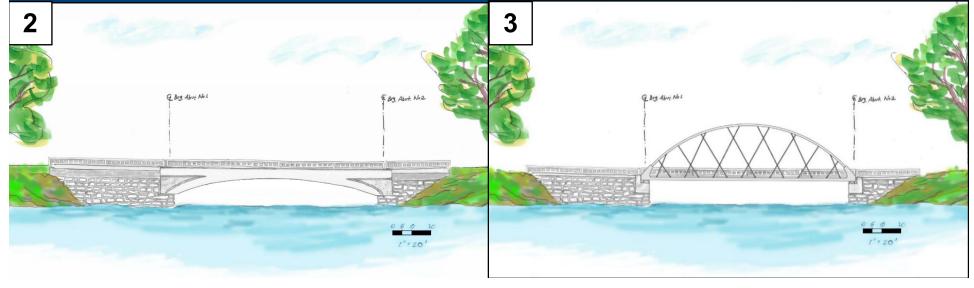


Recap of Replacement Options - Substructure

Elevation

Section


Recap of Replacement Options - Superstructure


Precast Concrete Girders

- 1. Prefabricated standard girder shape with aesthetic fascia panel
- 2. Prefabricated arched girder

Tied Arch

3. Tied arch with steel arch rib and concrete tie-girder

Approach to Evaluating Replacement

- Steps 1 & 2: Identify, assess & short list initial options
 - Abutments & Retaining Walls
 - Widen approach to accommodate typical section.
 - Remove eroded fill within approaches, replace with concrete fill
 - Superstructure
 - Assess conventional girder alternatives
 - Assess tied arch alternatives
- Step 3: Assess constructability, schedule, impacts, longevity & cost
- Step 4: Identify most suitable replacement strategy

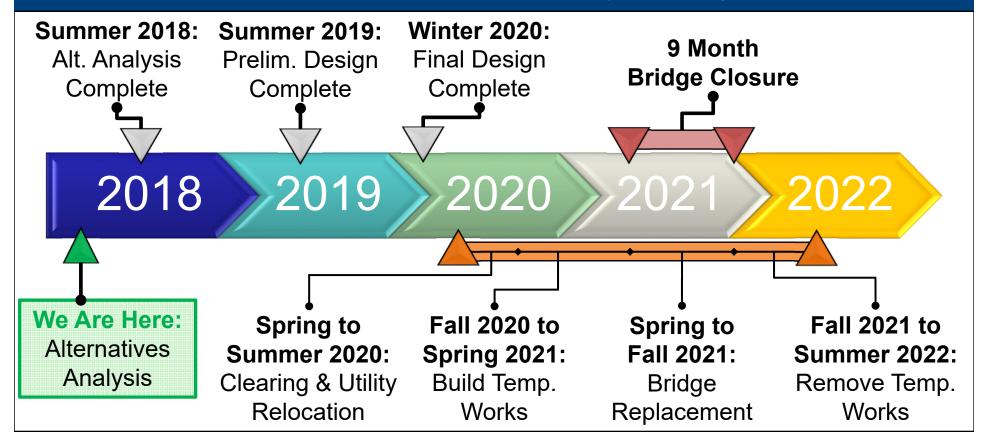
Multiple Construction Methods Evaluated

- Conventional Construction
 - Typical construction approach
 - Cast-in-place concrete
 - More work completed on-site, slower
- Accelerated Bridge Construction
 - Allows more work to be completed off-site, or without traffic impact
 - Evaluated multiple approaches to ABC
 - Prefabricated Bridge Elements
 - Bridge Movement Systems Lateral Slide

Conventional Construction

- Formwork is constructed on-site, typically with timber.
- Required for all concrete placed on-site.

 Formwork construction will occur after traffic is rerouted and the existing bridge has been removed.


Conventional Construction Sequence

- Phase 1 Clear Trees & Relocate Overhead Utilities
 - Clearing is ideally performed during winter months to minimize bat environmental impacts and will be performed in its entirety at the onset of project construction.
- Phase 2 Construct Temp. Embankments, Temp. Bridge, & Temp. Trestles
 - > Close Bridge to Traffic
- Phase 3 Demolish Existing Bridge
- Phase 4 Substructure Stabilization & Rehabilitation
- Phase 5 Superstructure Replacement
 - > Open Bridge to Traffic
- Phase 6 Final Cleanup & Site Restoration (includes temporary bridge removal)

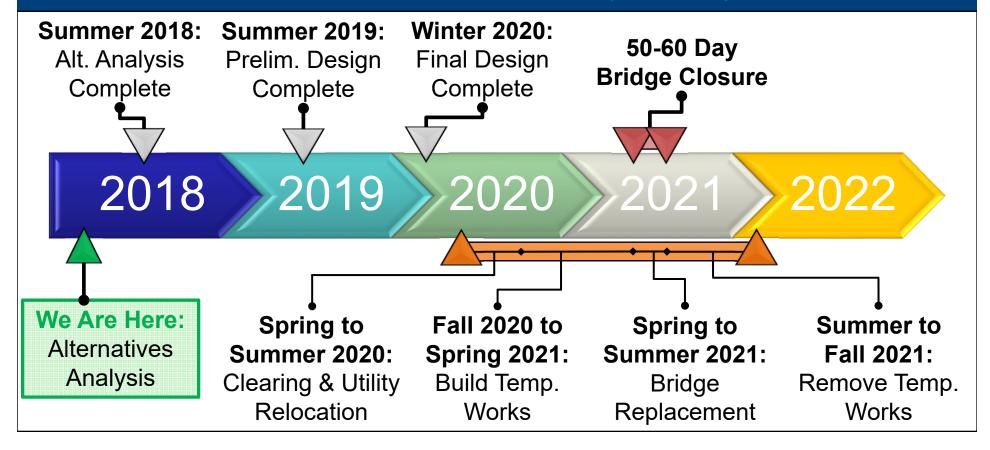
Estimated Conventional Construction Schedule

- Approximately 18-24 months of construction, bridge closure of 9 months
 - Assumes November to March in-water work windows with no winter shutdown
 - Schedule does not account for archeological remediation which may be required
 - All durations and dates are conceptual and are subject to change

ABC - Prefabricated Bridge Elements

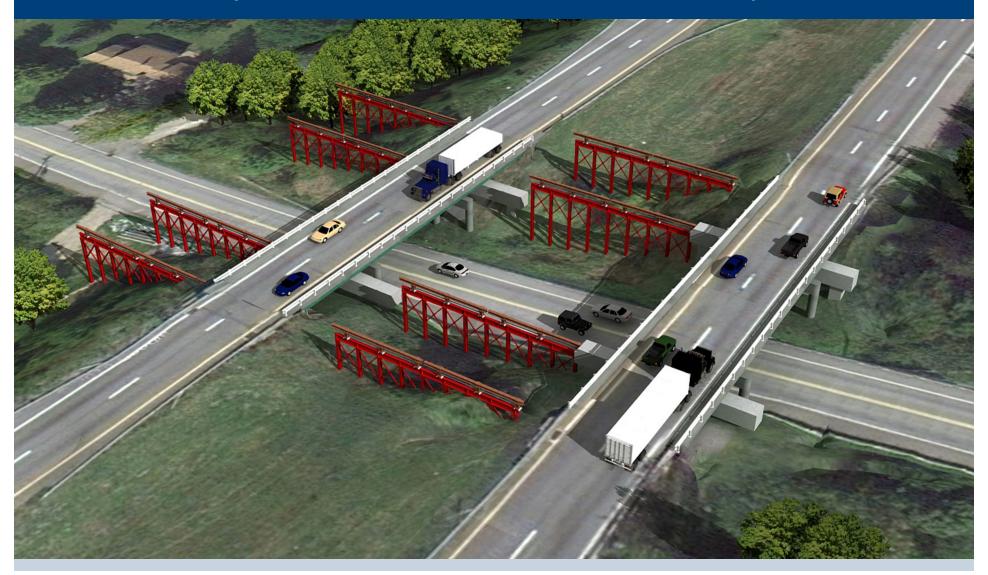
- Elements prefabricated off-site prior to on-site construction.
- Crews will work night and day shifts, possibly working around the clock.
- Would not include construction of a temporary bridge.
- A short duration road closure will be required.

ABC – Prefabricated Bridge Elements Sequence


- Phase 1 Clear Trees & Relocate Overhead
 - Clearing is ideally performed during winter months to minimize bat environmental impacts and will be performed in its entirety at the onset of project construction.
- Phase 2 Construct Temporary Embankments & Trestles
- Phase 3 Complete Portions of Substructure Rehabilitation
 - > Close Bridge to Traffic
- Phase 4 Accelerated Bridge Construction
 - Demolish Existing Bridge
 - Substructure Rehabilitation (Precast Abutment Cap)
 - Superstructure Replacement (Precast Girders & Deck)
 - > Open Bridge to Traffic
- Phase 5 Final Cleanup and Site Restoration

Estimated ABC Prefabricated Bridge Elements Schedule

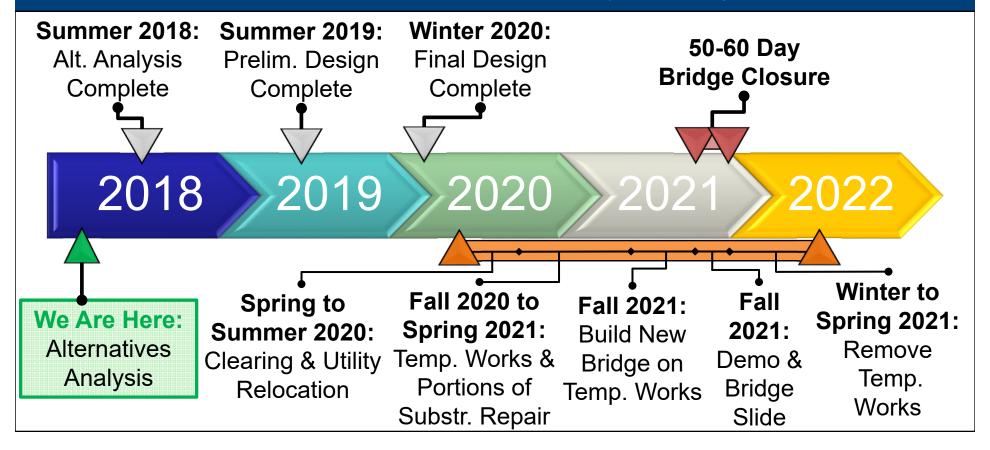
- Approximately 12-18 months of construction, bridge closure of 50-60 days
 - Assumes November to March in-water work windows with no winter shutdown
 - Schedule does not account for archeological remediation which may be required
 - All durations and dates are conceptual and are subject to change



ABC - Lateral Slide

- New bridge constructed west of existing bridge, leaving existing bridge open to traffic.
 - Prefabricated bridge elements could be used as part of this approach.
- ABC methods require more labor, crews may be required to work 24-7.
- Eliminates need for temporary bridge with a short duration road closure.

ABC Lateral Slide Construction Sequence


- Phase 1 Clear Trees & Relocate Overhead Utilities
 - Clearing is ideally performed during winter months to minimize bat environmental impacts and will be performed in its entirety at the onset of project construction.
- Phase 2 Construct Temporary Embankments & Trestles
- Phase 3 Construct New Bridge West of Existing, Begin Substructure Rehab.
 - > Close Bridge to Traffic
- Phase 4 Bridge Demo & Lateral Slide
 - Demolish Existing Bridge
 - Complete Substructure Rehabilitation
 - Lateral Slide of New Superstructure
 - > Open Bridge to Traffic
- Phase 5 Final Cleanup and Site Restoration

Estimated ABC Lateral Slide Schedule

- Approximately 18-24 months of construction, bridge closure of 50-60 days
 - Assumes November to March in-water work windows with no winter shutdown
 - Schedule does not account for archeological remediation which may be required
 - All durations and dates are conceptual and are subject to change

Construction Schedule Comparison

- Schedule Notes:
 - Duration for all superstructure alternatives is roughly similar
 - All construction durations are approximate and subject to change
 - ABC construction may include extensive night-work

APPROXIMATE PROJECT SCHEDULE									
	Conventional	Construction	Accelerated Bridge Construction						
Schedule Item	Off-Site Detour	Temporary Bridge	Prefab. Bridge Elements	Lateral Slide					
Detour / Bridge Closure (Days)	270 +/-	270 +/-	50 to 60 +/-	50 to 60 +/-					
Construction Duration (Months)	18 +/-	24 +/-	12 to 18 +/-	18 to 24 +/-					

Construction Cost Summary

APPROXIMATE PROJECT COSTS									
COST COMPONENT	CONVENTIONAL CONSTRUCTION			ACCELERATED BRIDGE CONSTRUCTION					
	Prefabricated Standard Girder	Prefabricated Arched Girder	Tied Arch	Prefabricated Standard Girder	Prefabricated Arched Girder	Tied Arch			
Construction	\$4,700,000	\$5,325,000	\$5,650,000	\$5,700,000	\$6,300,000	\$6,450,000			
Temporary Bridge / Off-Site Detour Cost	\$800,000	\$800,000	\$800,000	\$50,000	\$50,000	\$50,000			
User Costs	Minimal	Minimal	Minimal	\$330,000	\$330,000	\$330,000			
On-Time Completion Incentive	\$0	\$0	\$0	\$250,000	\$250,000	\$250,000			
GRAND TOTAL	\$5,300,000 to \$5,800,000	\$5,600,000 to \$6,500,000	\$6,200,000 to \$6,800,000	\$5,400,000 to \$7,000,000	\$5,700,000 to \$7,900,000	\$6,700,000 to \$7,200,000			

NOTES:

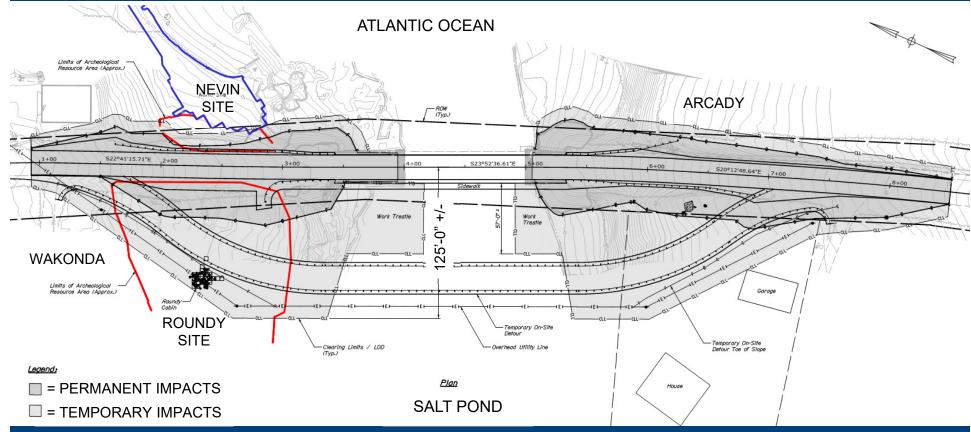
- 1. All costs represent approximate conceptual project costs based on current available information. Costs are subject to change.
- 2. User costs are based on \$5,500 per calendar day of bridge closure. User costs an on-site temporary bridge are considered minor.
- 3. Project costs presented herein exclude preliminary or construction engineering, ROW or archeological investigation/recovery.
- 4. Tied Arch cost is based on construction using a concrete tie girder with a steel arch rib. Construction of a fully cast-in-place tied arch would add approximately \$800,000 to the cost of this alternative.

Questions on Bridge Replacement?

Update on Temporary Bridge Layout

Additional Evaluations Completed

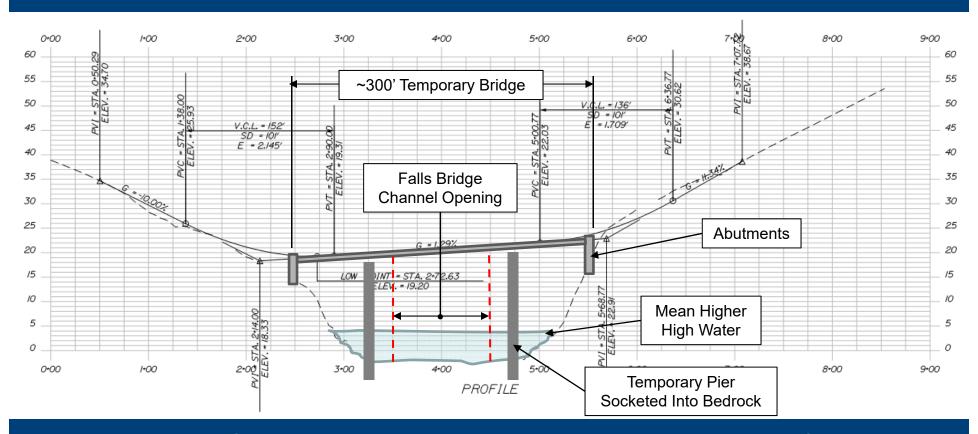
- Temporary roadway profile developed to:
 - Assess roadway geometrics
 - Identify requirements for excavation
 - Better understand potential environmental and property impacts
 - Update potential construction costs


Temporary Bridge Considerations

- Horizontal & Vertical Geometry are less than desirable to minimize impacts
- Depth to bedrock at south approach is unknown
- Additional survey & evaluations will be required if this option is advanced

Update on Temporary Bridge

Temporary Bridge (Rehab or Replacement)



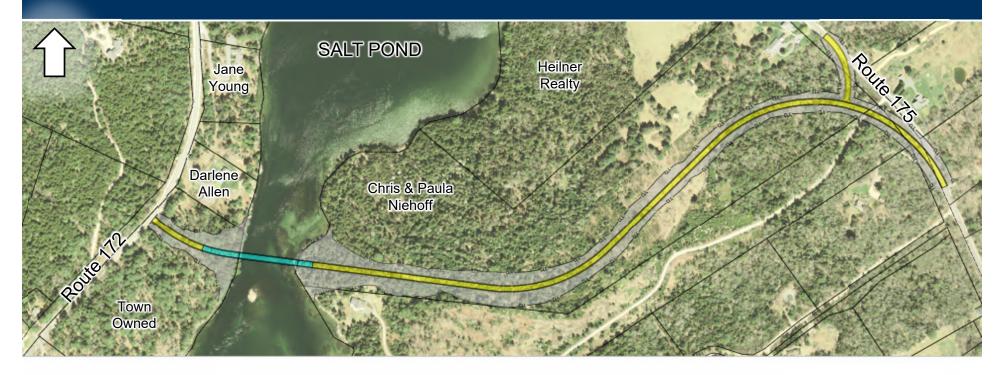
Note: Layout and substructure locations are approximate and subject to change as more information about the site becomes available.

Update on Temporary Bridge

Temporary Bridge (Rehab or Replacement)

Note: Layout and bridge foundation locations are conceptual and subject to change as more information about the site becomes available.

Questions on Temporary Bridge?


Update on Alternate Route

Refinement of This Alternative is Ongoing

- Roadway & Bridge Typical Section:
 - Two 12 foot lanes with two 4 foot shoulders
- Initial Design Concept Has Been Refined to:
 - Provide horizontal roadway geometry suitable for a 45 mph roadway
 - Show tee intersections at all roadway intersections
 - Increase roadway grades to minimize embankment height at the Salt Pond
 - Locate the required bridge piers out of the primary channel
 - Move fill slopes away from the Salt Pond to minimize environmental impact

Update on Alternate Route

Route 172 Route 175

Alternate Route Concept

Design Unknowns:

- Wetland Limits (only limited GIS data available, site evaluation will be scheduled)
- Archeological Considerations (initial site evaluation will be scheduled)
- The results of the above evaluations could significantly influence this alternative

Many additional items require consideration:

- Falls Bridge will be closed to all vehicle traffic. Turnarounds required. Cost?
- Bridge condition of bridge at time of transfer? Are repairs required? Cost?
- Requires additional maintenance by the Town (not included in project costs)
 - Future Falls Bridge maintenance will be the responsibility of the Town.
 - Portions of Route 175 will likely become a Town road.
 - The small strut/bridge north of the Falls Bridge on Route 175 will likely become a Town-owned structure.

Questions on Alternate Route?

Discussion

