Falls Bridge Renewal Project Design Alternatives Summary

Index

- 1. Bridge Terminology
- 2. Existing Conditions
- 3. Rehabilitation Alternatives
 - Alternative Concepts
 - Construction Schedule
- 4. Replacement Alternatives
 - Alternative Concepts
 - Construction Schedule
- 5. Alternate Route
- 6. Temporary Bridge

• **Superstructure:** All bridge components above the substructure

Blue Hill: Falls Bridge

Tied Arch Bridge Terminology

Additional Definitions:

- Fascia: Exterior / Outside face of the bridge
- Gutterline: Intersection of the roadway surface and curb

Bridge Deck & Wearing Surface

Bridge Drain

Approach and Approach Pavement

Bridge Curb

Bridge Railing

Approach Curb and Railing

2. Existing Conditions - Subsurface Soil

2. Existing Conditions - Hydraulics

Salt Pond Tidal Basin

- Large tidal basin ~1.1 sq. mile
- Tidal variations of ~10.5' to 11.5' in Blue Hill Bay
- Tidal variations in Salt Pond somewhat less
- Falls bridge is only major inlet
- Tides create reversing falls beneath the bridge

2. Existing Conditions - Utilities

Aerial Utilities Present:

- Bangor Hydro Electric Company
- FairPoint Communications
- Time Warner Cable
- Temporary relocation required

Utility Lines West of Bridge

2. Existing Conditions - Site Features

2. Existing Conditions - Bridge Deck

Deterioration on Underside of Deck

2. Existing Conditions – Bridge Substructure

Concrete Spalling at Abutment

Settling & Shifting Masonry

2. Existing Conditions - Bridge Superstructure

West Arch Tie Girder

Anticipated Scope of Superstructure Rehabilitation

Superstructure Rehabilitation - Demolition

Superstructure Rehabilitation - Strengthening

Anticipated Scope of Substructure Rehabilitation

Substructure Rehabilitation

<u>Approach Walls:</u> Address wall stability and water infiltration through the installation of rock anchors and placement of concrete fill.

Construction Sequence:

- 1. Install rock anchors
- 2. Excavate existing fill at low tide
- 3. Place geotextile layer
- 4. Place concrete in layers
 - Approx. 1,000 CY of concrete
- 5. Perform superstructure rehab.
- 6. Place fill, pavement, and barrier

Substructure Rehabilitation

<u>Abutments:</u> Address masonry shifting, concrete condition and potential stability by replacing the existing concrete abutment cap.

Substructure Rehabilitation

<u>Abutments:</u> Address masonry shifting, concrete condition and potential stability by replacing the existing concrete abutment cap.

Sidewalk Addition

- <u>Alongside Bridge:</u> 5' Wide independent pedestrian bridge, prefab. steel.
- Location on salt pond side minimizes impacts to archeological resources.

Estimated Construction Schedule

- Approximately 18-24 months of construction, bridge closure of 18-24 months
 - Assumes November to March in-water work windows with no winter shutdown
 - Excludes construction of a temp. bridge. Adding a temp. bridge would add 5-6 months
 - Schedule does not account for archeological remediation which may be required
 - All durations and dates are conceptual and are subject to change

Design Criteria

- 100 Year service life, designed to carry modern design loads
- Modern typical section used as a starting point for replacement alternatives

TYPICAL SECTION WITH WIDE SHOULDERS

TYPICAL SECTION WITH SIDEWALK

Superstructure Options Evaluated

Precast Concrete Girders

1. Prefabricated standard girder shape with aesthetic fascia panel Tied Arch

2. Tied arch with steel arch rib and concrete tie-girder

Substructure – Stone masonry to remain in place

Substructure – Repairs similar to rehabilitation option

Elevation

Section

Construction Methods Evaluated

Conventional Construction

This method is a typical construction approach utilizing cast-in-place concrete where the majority of work is completed on-site resulting in a longer construction season.

Accelerated Bridge Construction (ABC)*

This method allows for more work to be completed off-site resulting in minimized traffic impact.

- Evaluated multiple approaches to ABC
 - o Prefabricated Bridge Elements
 - o Bridge Movement Systems Lateral Slide

* ABC less applicable to rehabilitation option given the nature of the work

Conventional Construction Techniques

- Formwork is constructed on-site, typically with timber.
- Required for all concrete placed on-site.
- Formwork construction will occur after traffic is rerouted using a temporary detour located on-site and the existing bridge has been removed.

Estimated Conventional Construction Schedule

- Approximately 18-24 months of construction, bridge closure of 9 months
 - Assumes November to March in-water work windows with no winter shutdown
 - Schedule does not account for archeological remediation which may be required
 - All durations and dates are conceptual and are subject to change

ABC – Prefabricated Bridge Elements

- Elements prefabricated off-site prior to on-site construction.
- Crews will work night and day shifts, possibly working around the clock.
- Would not include construction of a temporary bridge.
- A short duration road closure will be required (50 to 60 days).

Estimated ABC Prefabricated Bridge Elements Schedule

- Approximately 12-18 months of construction, bridge closure of 50-60 days
 - Assumes November to March in-water work windows with no winter shutdown
 - Schedule does not account for archeological remediation which may be required
 - All durations and dates are conceptual and are subject to change

ABC – Lateral Slide

- New bridge constructed west of existing bridge, leaving existing bridge open to traffic.
 - Prefabricated bridge elements could be used as part of this approach.
- ABC methods require more labor, crews may be required to work 24-7.
- Eliminates need for temporary bridge with a short duration road closure (50 to 60 days).

Estimated ABC Lateral Slide Schedule

- Approximately 18-24 months of construction, bridge closure of 50-60 days
 - Assumes November to March in-water work windows with no winter shutdown
 - Schedule does not account for archeological remediation which may be required
 - All durations and dates are conceptual and are subject to change

5. Alternate Route

5. Alternate Route

Estimated Construction Schedule for Concept #1

- Approximately 12-18 months of construction
 - Assumes November to March in-water work windows with no winter shutdown
 - Schedule does not account for archeological remediation which may be required
 - All durations and dates are conceptual and are subject to change
 - Assumes construction starts in 2021. Reflects need for addt'l environmental assessments

6. Temporary Bridge

Rehabilitation or Replacement (Conventional Construction Only)

Note: Layout is approximate and subject to change as more information about the site becomes available.

6. Temporary Bridge

Rehabilitation or Replacement (Conventional Construction Only)

Note: Layout and foundation locations are conceptual, subject to change as information becomes available.

Summary Slide

Additional information is available online at:

www.townofbluehillmaine.org/falls-bridge-project

www.southbluehillmaine.org/falls-bridge-committee--open-mtgs.html

To submit questions or comments contact:

www1.maine.gov/mdot/projects/bluehill/fallsbridge/

Andrew Lathe, Project Manager Maine Department of Transportation Andrew.w.lathe@maine.gov - (207) 441-7362

